Load Regulation, Line Regulation and Cross-Loading

DC Output Load Regulation

 

Of course one of the first things we want to see is how well this PSU can regulate the DC outputs and maintain constant voltages.  To simulate real world and maximum loading conditions, the Ultra X3 PSU was connected to the load testers and supplied with a constant 115 VAC.  In this test we are interested in seeing how well a PSU can maintain the various output voltages while operating under different loads. 

 

The ATX12V V2.2 tolerance for voltages states how much each output (rail) is allowed to fluctuate and has tighter tolerances now for the +12V outputs. 

 

Ultra X3 1,000W EE Modular Power Supply Review - Cases and Cooling 41

 

The following table lists the DC voltage results at the different loads for the Ultra X3 1,000W PSU while operating on 115 VAC, 60 Hz.

 

Ultra X3 1,000W EE Modular Power Supply Review - Cases and Cooling 42

 

The PSU produced good load regulation on all of the outputs across a broad range of loads; even when delivering 1,000 watts of DC power.  All the major outputs remained well within the specified limits.

 

DC Output Line Regulation

 

In this test we are interested in seeing how well a PSU can maintain the various output voltages while the AC input line voltage changes.  In the previous Load Regulation test, the AC line voltage was held constant at 115 VAC.  Now we will look at how much the DC outputs change as the AC line voltage is changed from 120 VAC down to 90 VAC.

 

Ultra X3 1,000W EE Modular Power Supply Review - Cases and Cooling 43

 

The Line Regulation test was performed with the combined DC loads set to 600W.  The AC input voltage to the power supply (via the Extech power analyzer) was adjusted using a Powerstat variable autotransformer. 

 

No measurable change in the DC outputs — very good.

 

Cross-Loading Test

 

PC switching mode power supplies provide multiple DC output voltages.  Ideally, the total load should be distributed across all the main outputs (+3.3V, +5V, +12V).  This means that the combined +3.3V and +5V load should be proportional to the combined +12V load; as one increases, so should the other.  Unfortunately, this is not always the case, especially in newer PCs that predominately use +12V and may put only minimal loads on the +3.3V and/or +5V rails.  Cross-loading refers to imbalanced loads.  If a PC pulls 500W on the +12V outputs and only 50W (or less) on the combined 3.3V and +5V outputs, the resulting voltage regulation may suffer.

 

Ultra X3 1,000W EE Modular Power Supply Review - Cases and Cooling 44

 

In the first test we put a heavy load (68A/816W) on the +12V output and a light load on the remaining outputs.  Sure enough, the Ultra X3 had no problems delivering over 800W on the +12V rail.  Even with this large imbalance, the voltages all look very good.

 

In the second test we reversed the cross-load and placed a heavy load (140W) on the +3.3V and +5V outputs with a light load (4A/48W) on the +12V rail.  Once again, the Ultra X3 passed this test without problems.

 

In both tests the measured AC ripple remained consistent with the values observed during the other tests and stayed well under control.  It’s interesting to note that the overall power supply efficiency for the first cross-load test (heavy +12V load) was higher (78.4%) than for the second cross-load test (76.1%).  This illustrates a common trait of most PC switching power supplies — the +12V section is more efficient than the +3.3V/5V section. 

 

« PreviousNext »