Load Regulation, Line regulation and Crossloading

DC Output Load Regulation

 

Of course one of the first things we want to see is how well this PSU can regulate the DC outputs and maintain constant voltages.  To simulate real world and maximum loading conditions, the OP750 PSU was connected to the load testers and supplied with a constant 115 VAC.  In this test we are interested in seeing how well a PSU can maintain the various output voltages while operating under different loads. 

 

The ATX12V V2.2 tolerance for voltages states how much each output (rail) is allowed to fluctuate and has tighter tolerances now for the +12V outputs. 

 

SilverStone Olympia 750W Power Supply Review - Cases and Cooling 34

 

The following table lists the DC voltage results at the different loads for the Olympia 750W PSU while operating on 115 VAC, 60 Hz.

 

SilverStone Olympia 750W Power Supply Review - Cases and Cooling 35

 

The PSU produced very good load regulation on all of the outputs across a broad range of loads; all the way up to its maximum rated output of 750W.  The outputs stayed within the ±3% range specified by SilverStone, which is tighter than the ±5% ATX12V standard.

 

DC Output Line Regulation

 

In this test we are interested in seeing how well a PSU can maintain the various output voltages while the AC input line voltage changes.  In the previous Load Regulation test, the AC line voltage was held constant at 115 VAC.  Now we will look at how much the DC outputs change as the AC line voltage is changed from 120 VAC down to 90 VAC.

 

SilverStone Olympia 750W Power Supply Review - Cases and Cooling 36

 

The Line Regulation test was performed with the combined DC loads set to 600W.  The AC input voltage to the power supply (via the Extech power analyzer) was adjusted using a Powerstat variable autotransformer. 

 

Virtually no measurable change in the outputs; very good.

 

Cross-Loading Test

 

PC switching mode power supplies provide multiple DC output voltages.  Ideally, the total load should be distributed across all the main outputs (+3.3V, +5V, +12V).  This means that the combined +3.3V and +5V load should be proportional to the combined +12V load; as one increases, so should the other.  Unfortunately, this is not always the case, especially in newer PCs that predominately use +12V and may put only minimal loads on the +3.3V and/or +5V rails.  Cross-loading refers to imbalanced loads.  If a PC pulls 500W on the +12V outputs and only 50W (or less) on the combined 3.3V and +5V outputs, the resulting voltage regulation may suffer.

 

SilverStone Olympia 750W Power Supply Review - Cases and Cooling 37

 

In the first test we put a heavy load (56A/672W) on the +12V output and a light load on the remaining outputs.  Sure enough, the Olympia had no problems delivering well over 600W on the +12V rail.  Even with this large imbalance, the voltages all look very good.

 

In the second test we reversed the cross-load and placed a heavy load (126W) on the +3.3V and +5V outputs with a light load (4A/48W) on the +12V rail.  Once again, the Olympia PSU passed this test without problems.

 

In both tests the measured AC ripple remained consistent with the values observed during the other tests and stayed well under control.

 

« PreviousNext »