Efficiency, Differential Temperature and Noise
Efficiency
The overall efficiency of a power supply is very important. The less waste heat generated the better! Efficiency is defined by the power output divided by the power input and is usually expressed as a percentage. If a PSU were a 100% efficient (which none are) 800 watts of AC power going in would result in 800 watts of DC power coming out (with no waste heat to dissipate). In the real world there are always inefficiencies and power is lost in the form of heat during the conversion process.
Newer revisions to the ATX12V Power Supply Design Guide V 2.2 have continued to increase the efficiency recommendations for PC switching mode power supplies and now lists both required and recommended minimum efficiencies.
I measured the AC power input to the NZXT HALE82 850W PSU with the Extech power analyzer while the total DC load was found by adding all the individual +3.3V, +5V, +12V, -12V and +5VSB loads together.
The overall efficiency of the NZXT HALE82 850W power supply is very good for an 80Plus Bronze unit.
Note 1: Power Factor ≥0.90 (50% to 100% Load)
Note 2: Tests conducted at room temperature (25°C)
Spending a little more money up front to purchase a high efficiency power supply may very well help pay for itself over the lifetime of the PC… 🙂
Differential Temperature and Noise Levels
To simulate real world operation the NZXT HALE82 850W power supply was mounted in a modified mid tower case (Lian Li PC60) during testing. Some of the warm exhaust air from the PSU under test is recirculated back into the case, which allows the internal case air temperature to increase with load, just like it would in a real PC.
The differential temperature across the power supply was calculated by subtracting the internal case air temperature (T in) from the temperature of the warm exhaust air flowing out the back of the power supply (T out).
Thermocouples were placed at the air inlet and exhaust outlet. The ambient room air temperature was 23ºC (74ºF) +/- 0.5ºC during testing.
T out = temperature of air exhausting from power supply
T in = temperature of air entering power supply
Delta T = T out – T in
Sound pressure level readings were taken 3’ away from the rear of the case in an otherwise quiet room. The ambient noise level was ~28 dBA.
Below 400W output and 30°C inlet air temperature, the HALE82 850W PSU is relatively quiet. As the load continues to increase all the way up to 850W the cooling fan speeds up to where it becomes noticeable but never really loud. Note: I was not able to take SPL readings at the higher loads due to all the programmable DC load cooling fans running.
(Courtesy of NZXT)
This is a great, rock solid
This is a great, rock solid power supply. This PSU is capable of handling almost anything that you can throw at it, except for some extremely exotic setups.
http://www.amazon.com/gp/product/B006I2H08Y/ref=as_li_ss_tl?ie=UTF8&tag=emjay2d-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=B006I2H08Y
Seasonic is my most trusted
Seasonic is my most trusted brand, and kudos to NZXT for going with flat black cables. Too bad they didn’t go all black with the 24pin and motherboard cables. Good looking PSU too, stands out without being gaudy.