Flash storage company Sandisk has recently jumped into the world of enterprise PCI-E caching SSDs – what they are calling Solid State Accelerators. Currently, they are offering a 200GB and 400GB model under the company’s Lightning PCIe series. The SSDs feature a proprietary Sandisk controller driving 24nm SLC NAND flash, a PCI-E 2.0 x4 interface, and maximum power draw of 15 watts.

The Lightning Accelerators use the NAND flash for Sandisk’s own foundry and offer a large performance boost for servers and workstations over hard drives and SATA SSDs. It is capable of 410 MB/s sequential reads or 110,000 IOPS. Further, when using 4KB and 8KB blocks, the drives can reach 23,000 and 17,000 read/write IOPS respectively. Other specifications include an average response time of 245 microseconds, and less than 30 millisecond maximum response times. The Solid State Accelerators also feature sustained read and write latencies as low as 50 microseconds.

 

Sandisk has built the drives so that they can be configured as boot drives, storage drives, or caching drives. The company supports up to 5 drives in a single system, for a maximum of 2TB of flash storage. In addition, Sandisk is offering up its Flashsoft software that allows the Lightning Accelerators to be used as caching drives on Windows-based systems. Unfortunately, that is an additional cost which is not included in the already pricey SSDs (good thing for corporate expense accounts!).

Speaking of pricing, the 200GB LP206M has an MSRP of $1,350 while the 400GB LP406M has an MSRP of $2,350. Both cards have five year warranties and a MTBF rating of 2 million hours. You can find more information on the Sandisk Website.

It will be interesting to see how this Sandisk accelerator stacks up to the likes of the Intel 910 and FusioIO drives! The FusionIO FX, for example, gives you 420GB of QDP MLC NAND for $2,495, which works out such that Sandisk has a slightly lower cost-per-gigabyte value and SLC flash. We will have to wait for some independant reviews to say which drive is actually faster, however.