Summary Thus Far
We take Frame Rating to the GeForce GTX 690, GTX Titan and Radeon HD 7990 / 7970s CrossFire!!
Because of the complexity and sheer amount of data we have gathered using our Frame Rating performance methodology, we are breaking it up into several articles that each feature different GPU comparisons. Here is the schedule:
- 3/27: Frame Rating Dissected: Full Details on Capture-based Graphics Performance Testing
- 3/27: Radeon HD 7970 GHz Edition vs GeForce GTX 680 (Single and Dual GPU)
- 3/30: AMD Radeon HD 7990 vs GeForce GTX 690 vs GeForce GTX Titan
- 4/2: Radeon HD 7950 vs GeForce GTX 660 Ti (Single and Dual GPU)
- 4/5: Radeon HD 7870 GHz Edition vs GeForce GTX 660 (Single and Dual GPU)
Welcome to the second in our intial series of articles focusing on Frame Rating, our new graphics and GPU performance technology that drastically changes how the community looks at single and multi-GPU performance. In the article we are going to be focusing on a different set of graphics cards, the highest performing single card options on the market including the GeForce GTX 690 4GB dual-GK104 card, the GeForce GTX Titan 6GB GK110-based monster as well as the Radeon HD 7990, though in an emulated form. The HD 7990 was only recently officially announced by AMD at this years Game Developers Conference but the specifications of that hardware are going to closely match what we have here on the testbed today – a pair of retail Radeon HD 7970s in CrossFire.
Will the GTX Titan look as good in Frame Rating as it did upon its release?
If you are just joining this article series today, you have missed a lot! If nothing else you should read our initial full release article that details everything about the Frame Rating methodology and why we are making this change to begin with. In short, we are moving away from using FRAPS for average frame rates or even frame times and instead are using a secondary hardware capture system to record all the frames of our game play as they would be displayed to the gamer, then doing post-process analyzation on that recorded file to measure real world performance.
Because FRAPS measures frame times at a different point in the game pipeline (closer to the game engine) its results can vary dramatically from what is presented to the end user on their display. Frame Rating solves that problem by recording video through a dual-link DVI capture card that emulates a monitor to the testing system and by simply applying a unique overlay color on each produced frame from the game, we can gather a new kind of information that tells a very unique story.
The capture card that makes all of this work possible.
I don't want to spend too much time on this part of the story here as I already wrote a solid 16,000 words on the topic in our first article and I think you'll really find the results fascinating. So, please check out my first article on the topic if you have any questions before diving into these results today!
Test System Setup | |
CPU | Intel Core i7-3960X Sandy Bridge-E |
Motherboard | ASUS P9X79 Deluxe |
Memory | Corsair Dominator DDR3-1600 16GB |
Hard Drive | OCZ Agility 4 256GB SSD |
Sound Card | On-board |
Graphics Card |
NVIDIA GeForce GTX TITAN 6GB NVIDIA GeForce GTX 690 4GB AMD Radeon HD 7970 CrossFire 3GB |
Graphics Drivers |
AMD: 13.2 beta 7 NVIDIA: 314.07 beta (GTX 690) NVIDIA: 314.09 beta (GTX TITAN) |
Power Supply | Corsair AX1200i |
Operating System | Windows 8 Pro x64 |
On to the results!
Ryan,
Don’t worry about the
Ryan,
Don’t worry about the negative and bias comments.
Thank you for this great review, it has opened my eyes to the cause of these problems. And hopefully a new way to review all Graphics cards in future, instead of just looking at the highest FPS numbers.
I have always thought smooth experience is better than a fast (high FPS) and choppy visual gameplay.
Hopefully AMD and Nvidia will consider these issues in there next GPU and or driver releases now it has been exposed, rather than targeting figures. This means a better gameplay experience for the consumer.
Thank you and Keep up the good work.
Ryan,
Don’t worry about the
Ryan,
Don’t worry about the negative and bias comments.
Thank you for this great review, it has opened my eyes to the cause of these problems. And hopefully a new way to review all Graphics cards in future, instead of just looking at the highest FPS numbers.
I have always thought smooth experience is better than a fast (high FPS) and choppy visual gameplay.
Hopefully AMD and Nvidia will consider these issues in there next GPU and or driver releases now it has been exposed, rather than targeting figures. This means a better gameplay experience for the consumer.
Thank you and Keep up the good work.
I think that instead of the
I think that instead of the percentile curve you could reach a more meaningful result using a derived curve(of the frametime curve).
Let’s say that the average is 60 fps.
Now let’s say that 20 percent of the frames are 25 ms(40fps).
The difference is how these 25 ms values are spread in the curve. If they are all together or if they are alternated to 17 ms ones, forming saw-like shape in the curve.
You will not have the same feeling stutter-wise
What i want to say is that the percentile graph is not appropriate for the kind of analysis that you are doing. You should use a derived curve since deriving a function measures how quickly a curve grows (negatively or positively) and this is not measured by the percentile grows. After this you could measure the area of this curve and you could also arrive to use one only number to measure the amount of stutter.Infact in this way you would bring out of the equation the part of the frametime curve that is below the average but that runs steadily.
Calculating the area of a very saw-like derived frametime curve you would obtain a high number whereas calculating the area of a smooth (even if variating) derived frametime curve you would get a very low number. This would tell you how smooth are transitions, not if the gpu is powerful enough to make the game playable. For this you should check the average fps.
So in the end if you got decent fps and very low value for the area of this function you got a great experience,
if oyu got decent fps but high derived func area value then you got stutterish experience.
If you got low fps and low value you got a underdimensioned gpu but good smoothness.
I think that instead of the
I think that instead of the percentile curve you could reach a more meaningful result using a derived curve(of the frametime curve).
Let’s say that the average is 60 fps.
Now let’s say that 20 percent of the frames are 25 ms(40fps).
The difference is how these 25 ms values are spread in the curve. If they are all together or if they are alternated to 17 ms ones, forming saw-like shape in the curve.
You will not have the same feeling stutter-wise (and here i am not saying anything new)
What i want to say is that the percentile graph is not appropriate for the kind of analysis that you are doing. You should use a derived curve since deriving a function measures how quickly a curve grows (negatively or positively) and this is not measured by the percentile curve. After this you could measure the area of this curve and you could also arrive to use one only number to measure the amount of stutter.Infact in this way you would bring out of the equation the part of the frametime curve that is below the average but that runs steadily(something that with percentile curve you cant do).
Calculating the area of the derivation of a very saw-like frametime curve you would obtain a high number whereas calculating the area of the derivation ofa smooth (even if variating) frametime curve you would get a very low number. This would tell you how smooth are transitions, not if the gpu is powerful enough to make the game playable. For this you should check the average fps.
So in the end if you got decent fps and very low value for the area of this function you got a great experience,
if oyu got decent fps but high derived func area value then you got stutterish experience.
If you got low fps and low value you got a underdimensioned gpu but good smoothness.
EDITED :I made some corrections to the post i previously wrote since it is not possible to edit it
Quick Google “geforce frame
Quick Google “geforce frame metering” and you will find out why the nVi cards rarely have runt frames. In fact, nVi cards DO have them. They just delays those frames a bit to match with other good frames’ speed, therefore the frame time chart looks good miraculously.
That’s nVidia, it’s meant to SELL, at crazy pricetags of course.