In addition to Intel's announcement of new Xeon processors, the company is launching three new Atom-series processors for servers later this year. The new processor lineups include the Intel Atom S12x9 family for storage applications, Rangeley processors for networking gear, and Avoton SoCs for low-power micro-servers.
The Intel Atom S12x9 family takes the existing S1200 processors and makes a few tweaks to optimize the SoCs for storage servers and other storage appliances. For reference, the Intel Atom S1200 series of processors feature sub-9W TDPs, 1MB of cache, and two physical CPU cores clocked at up to 2GHz. However, Intel did not list the individual S12x9 SKUs or specifications, so it is unknown if they will also be clocked at up to 2GHz. The new Atom S12x9 processors will feature 40 PCI-E 2.0 lanes (26 Root Port and 16 Non-Transparent Bridge) to provide ample bandwidth between I/O and processor. The SoCs also feature hardware RAID acceleration, Native Dual-Casting, and Asynchronous DRAM Self-Refresh. Native Dual-Casting allows data to be read from one source and written to two memory locations simultaneously while Asynchronous DRAM Self-Refresh protects data during a power failure.
The new chips are available now to customers and will be available in OEM systems later this year. Vendors that plan to release systems with the S12x9 processors include Accusys, MacroSAN, Qnap, and Qsan.
Intel is also introducing a new series of processors — codenamed Rangeley — is intended to power future networking gear. The 22nm Atom SoC is slated to be available sometime in the second half of this year (2H'13). Intel is positioning the Rangeley processors at entry-level to mid-range routers, switches, and security appliances.
While S12x9 and Rangeley are targeted at specific tasks, the company is also releasing a general purpose Atom processor codenamed Avoton. The Avoton SoCs are aimed at low power micro-servers, and is Intel's answer to ARM chips in the server room. Avoton is Intel's second generation 64-bit Atom processor series. It uses the company's Silvermont architecture on a 22nm process. The major update with Avoton is the inclusion of an Ethernet controller built into the processor itself. According to Intel, building networking into the processor instead of as a chip on a separate add-on board results in "significant improvements in performance per watt." These chips are currently being sampled to partners, and should be available in Avoton-powered servers later this year (2H'13).
This year is certainly shaping up to be an interesting year for Atom processors. I'm excited to see how the battle unfolds between the ARM and Atom-based solutions in the data center.