Pricing and Testing Process
With a starting MSRP of $399 for the reference models of the GeForce GTX 770, here is the comparisons we are pitting it against:
- NVIDIA GeForce GTX 770 2GB – $399
- NVIDIA GeForce GTX 780 3GB – $649
- NVIDIA GeForce GTX 680 2GB – $449
- AMD Radeon HD 7970 3GB GHz Edition – $449
Yes, the GTX 770 is the LEAST expensive product in the comparison, but NVIDIA claims the GTX 770 will rival the HD 7970 GHz Edition, and if it can with a $50 price advantage, that would be a big deal for potential buyers. Also worth noting is the $250 gap between the GTX 770 and the GTX 780 – that's quite a big hole to simply leave open in my view.
Testing Configuration
The specifications for our testing system haven't changed much.
Test System Setup | |
CPU | Intel Core i7-3960X Sandy Bridge-E |
Motherboard | ASUS P9X79 Deluxe |
Memory | Corsair Dominator DDR3-1600 16GB |
Hard Drive | OCZ Agility 4 256GB SSD |
Sound Card | On-board |
Graphics Card |
AMD Radeon HD 7990 6GB AMD Radeon HD 7970 3GB CrossFire NVIDIA GeForce GTX TITAN 6GB NVIDIA GeForce GTX 690 4GB |
Graphics Drivers |
AMD: 13.5 beta (HD 7990) AMD: 13.3 (HD 7970 CrossFire) NVIDIA: 320.18 |
Power Supply | Corsair AX1200i |
Operating System | Windows 8 Pro x64 |
What you should be watching for
-
GTX 770 vs GTX 680 – Let's be honest, these are basically the same chip. So how much better is the new GTX 770 over the current GTX 680?
-
GTX 770 vs GTX 780 – With a big price gap between the GTX 770 and the GTX 780, how does that performance delta look?
- GTX 770 vs HD 7970 GHz – Maybe the most interesting comparison moving forward, does AMD's HD 7970 GHz graphics card lose the value placement for high end gamers?
Frame Rating: Our Testing Process
If you aren't familiar with it, you should probably do a little research into our testing methodology as it is quite different than others you may see online. Rather than using FRAPS to measure frame rates or frame times, we are using an secondary PC to capture the output from the tested graphics card directly and then use post processing on the resulting video to determine frame rates, frame times, frame variance and much more.
This amount of data can be pretty confusing if you attempting to read it without proper background, but I strongly believe that the results we present paint a much more thorough picture of performance than other options. So please, read up on the full discussion about our Frame Rating methods before moving forward!!
While there are literally dozens of file created for each “run” of benchmarks, there are several resulting graphs that FCAT produces, as well as several more that we are generating with additional code of our own.
If you don't need the example graphs and explanations below, you can jump straight to the benchmark results now!!
The PCPER FRAPS File
While the graphs above are produced by the default version of the scripts from NVIDIA, I have modified and added to them in a few ways to produce additional data for our readers. The first file shows a sub-set of the data from the RUN file above, the average frame rate over time as defined by FRAPS, though we are combining all of the GPUs we are comparing into a single graph. This will basically emulate the data we have been showing you for the past several years.
The PCPER Observed FPS File
This graph takes a different subset of data points and plots them similarly to the FRAPS file above, but this time we are look at the “observed” average frame rates, shown previously as the blue bars in the RUN file above. This takes out the dropped and runts frames, giving you the performance metrics that actually matter – how many frames are being shown to the gamer to improve the animation sequences.
As you’ll see in our full results on the coming pages, seeing a big difference between the FRAPS FPS graphic and the Observed FPS will indicate cases where it is likely the gamer is not getting the full benefit of the hardware investment in their PC.
The PLOT File
The primary file that is generated from the extracted data is a plot of calculated frame times including runts. The numbers here represent the amount of time that frames appear on the screen for the user, a “thinner” line across the time span represents frame times that are consistent and thus should produce the smoothest animation to the gamer. A “wider” line or one with a lot of peaks and valleys indicates a lot more variance and is likely caused by a lot of runts being displayed.
The RUN File
While the two graphs above show combined results for a set of cards being compared, the RUN file will show you the results from a single card on that particular result. It is in this graph that you can see interesting data about runts, drops, average frame rate and the actual frame rate of your gaming experience.
For tests that show no runts or drops, the data is pretty clean. This is the standard frame rate per second over a span of time graph that has become the standard for performance evaluation on graphics cards.
A test that does have runts and drops will look much different. The black bar labeled FRAPS indicates the average frame rate over time that traditional testing would show if you counted the drops and runts in the equation – as FRAPS FPS measurement does. Any area in red is a dropped frame – the wider the amount of red you see, the more colored bars from our overlay were missing in the captured video file, indicating the gamer never saw those frames in any form.
The wide yellow area is the representation of runts, the thin bands of color in our captured video, that we have determined do not add to the animation of the image on the screen. The larger the area of yellow the more often those runts are appearing.
Finally, the blue line is the measured FPS over each second after removing the runts and drops. We are going to be calling this metric the “observed frame rate” as it measures the actual speed of the animation that the gamer experiences.
The PERcentile File
Scott introduced the idea of frame time percentiles months ago but now that we have some different data using direct capture as opposed to FRAPS, the results might be even more telling. In this case, FCAT is showing percentiles not by frame time but instead by instantaneous FPS. This will tell you the minimum frame rate that will appear on the screen at any given percent of time during our benchmark run. The 50th percentile should be very close to the average total frame rate of the benchmark but as we creep closer to the 100% we see how the frame rate will be affected.
The closer this line is to being perfectly flat the better as that would mean we are running at a constant frame rate the entire time. A steep decline on the right hand side tells us that frame times are varying more and more frequently and might indicate potential stutter in the animation.
The PCPER Frame Time Variance File
Of all the data we are presenting, this is probably the one that needs the most discussion. In an attempt to create a new metric for gaming and graphics performance, I wanted to try to find a way to define stutter based on the data sets we had collected. As I mentioned earlier, we can define a single stutter as a variance level between t_game and t_display. This variance can be introduced in t_game, t_display, or on both levels. Since we can currently only reliably test the t_display rate, how can we create a definition of stutter that makes sense and that can be applied across multiple games and platforms?
We define a single frame variance as the difference between the current frame time and the previous frame time – how consistent the two frames presented to the gamer. However, as I found in my testing plotting the value of this frame variance is nearly a perfect match to the data presented by the minimum FPS (PER) file created by FCAT. To be more specific, stutter is only perceived when there is a break from the previous animation frame rates.
Our current running theory for a stutter evaluation is this: find the current frame time variance by comparing the current frame time to the running average of the frame times of the previous 20 frames. Then, by sorting these frame times and plotting them in a percentile form we can get an interesting look at potential stutter. Comparing the frame times to a running average rather than just to the previous frame should prevent potential problems from legitimate performance peaks or valleys found when moving from a highly compute intensive scene to a lower one.
While we are still trying to figure out if this is the best way to visualize stutter in a game, we have seen enough evidence in our game play testing and by comparing the above graphic to other data generated through our Frame rating system to be reasonably confident in our assertions. So much in fact that I am going to going this data the PCPER ISU, which beer fans will appreciate the acronym of International Stutter Units.
To compare these results you want to see a line that is as close the 0ms mark as possible indicating very little frame rate variance when compared to a running average of previous frames. There will be some inevitable incline as we reach the 90+ percentile but that is expected with any game play sequence that varies from scene to scene. What we do not want to see is a sharper line up that would indicate higher frame variance (ISU) and could be an indication that the game sees microstuttering and hitching problems.
Ryan nice review have you
Ryan nice review have you tried this with a 680? http://www.reddit.com/r/hardware/comments/1e8u6i/flash_your_geforce_gtx_680_to_the_unreleased_gtx/ it seams very interesting
I just wanted to point out
I just wanted to point out that the link “If you don’t need the example graphs and explanations below, you can jump straight to the benchmark results now!!” still links back to the 7990 review where it was first used. This was also true in the 780 review from last week. I’d think it should jump to the results for the current review.
Great write up as always Ryan. Makes me even more eager to see Haswell numbers next week so I can decide whether, after 5 years, my i7 920 finally should be retired…
I’m like you. I’m still
I’m like you. I’m still wondering when I’ll benefit from upgrading from my i7 920, and it looks like my pair of GTX 580s will still do ok for another year or more.
Thanks for the heads up,
Thanks for the heads up, fixed!
Me, too! My i7 920
Me, too! My i7 920 overclocked to 3.8ghz still doesn’t choke (CPU wise) at whatever game I throw at it.
The power consumption data is
The power consumption data is for the whole system, right? not graphic card-only.
I see EVGA have announced their lineup as well ( http://eu.evga.com/articles/00748/#3773 ), and most of their models specification say 254mm in length, which would fit perfectly in my SilverStone SG05… as opposed to other models. I hope their specifications are accurate.
Maybe we will see some reviews on the non-reference models, as well as EVGA’s ACX cooler, later in the week.
Yes, the power results are
Yes, the power results are full system power draw, at the wall.
Ill be honest 680s never
Ill be honest 680s never coming down in price, even now and 770s coming in at a lower price and faster leaves a sour taste in my mouth.
Eager to see how 770 in sli
Eager to see how 770 in sli compare to Titan and 7990. Considering it would be a cheaper alternative to them.
Great review as always. If I
Great review as always. If I could say one thing, it would be to change your FPS graphs to Bar graphs. So much easier to read.
Any concern with having this
Any concern with having this high end of a card only have 2GB of memory? I wonder if that will become a limitation in the next year or two, especially with 1440p becoming more and more common.
Awesome, they basically
Awesome, they basically lowered the price of a non reference 680 and called it a 770. A $50 price drop constitutes a Gold award? Maybe I just fail to see the innovation here. I just think the next generation of cards should be more than a copy and paste, seems some what bland for such a high award.
Again, I know your reviews
Again, I know your reviews are great, but I can’t help but just skip to the conclusion every time due to the lines instead of bar charts (useful to show how long or how many times a card goes below 30fps etc but harder to read). Is it really so difficult to put up a bar chart also like every other site for those of us who hate trying to figure out all the lines? I’m not saying remove them, just add to them with charts. Not knocking the review though ryan, they are the most informative out there IMHO (along with hardocp who shows max you can expect to run at in nice details). Just dislike the missing bar charts with mins+avg showing.
For the whiners this is a REFRESH, not a next gen. It’s faster, quiet, less heat and cheaper. For the 2GB whiners, you’ll be spending all day running at under 30fps min anyway no matter how much memory you have without 2 cards or a Titan/dualgpu card.
Look at all the reviews that show ABOVE 1920×1200 (1440p etc) WITH minimum fps showing. Tombraider, hitman absolution etc all hit BELOW 30fps so who cares about 2GB? You need to spend over $700 to run there. Heck, hardocp had to turn stuff down on GTX 780 even at 1920×1080! 7970, 680, 770 etc are all 1080P cards at best and many games need details turned down to run there. Discussing memory is pointless if you end up below 30fps to prove it’s useful.
It seems to me that they are
It seems to me that they are attempting to approach benchmarking from a different mind set than you seem to. They have said this many times since the start of developing this FCAT system that FPS is a terrible way to measure a GPU’s performance. They probably do not show you an average FPS, as a way to make you look at the graph instead. It doesn’t matter much if the average FPS is better on one card or another, if it is not consistent and smooth.
There are lots of other sites who will show you FPS as the main indicator of how good a card is. This site attempts to measure how smooth the experience is. The thing that actually matters.
I find this system pretty interesting. Of course I also look at other sites as well.
Ryan, how about the new
Ryan, how about the new display overclocking, can you test it with observed fps that you already developed ?
see if it can resolve our problem with tearing and stuttering
It’s bad when the GeForce GTX
It’s bad when the GeForce GTX 770 can out preform the Tahiti-based HD 7970 GHz Edition in crossfire because of the Micro Shuttering, of course at resolution 1920×1080 but come on AMD get that Shutter problem under control.
On the flip side I would never use FRAPS not alone pay for it to benchmarking my system.
Thanks 4 the Review PCPer I’ll be sticking with my EVGA GeForce GTX 670 and dropping another one in for SLI, knowing that Crossfire has Micro Shuttering problem in software and Nvidia uses hardware that’s build right in for such problems.
P.S I only use Nvidia Products!
Anthony. although Troy`s
Anthony. although Troy`s story is incredible… I just received a gorgeous Honda NSX since I been making $9717 this last 5 weeks and-just over, $10k lass-month. it’s realy my favourite work I’ve ever done. I started this three months/ago and immediately startad bringin in minimum $80.. per hour. I work through this link, Bow6.com
what I want to know is can I
what I want to know is can I drive 4 different desktops, extended desktops, off the one card, I’m not gaming, more like video on one, and browsers and so on on the others…
WHat would be the best card for 4x1080p monitors?