Haswell – A New Architecture
It’s finally here, the Intel Haswell processor in the form of the Core i7-4770K for desktop users. Is it time to upgrade?
Thanks for stopping by our coverage of the Intel Haswell, 4th Generation Core processor and Z87 chipset release! We have a lot of different stories for you to check out and I wanted to be sure you knew about them all.
- PCPer Live! ASUS Z87 Motherboard and Intel Haswell Live Event! – Tuesday, June 4th we will be hosting a live streaming event with JJ from ASUS. Stop by to learn about Z87 and overclocking Haswell and to win some motherboards and graphics cards!
- ASUS ROG Maximus VI Extreme Motherboard Review
- MSI Z87-GD65 Gaming Motherboard Review
- ASUS Gryphon Z87 Micro-ATX Motherboard Review
This spring has been unusually busy for us here at PC Perspective – with everything from new APU releases from AMD, new graphics cards from NVIDIA and now new desktop and mobile processors from Intel. There has never been a better time to be a technology enthusiast though some would argue that the days of the enthusiast PC builder are on the decline. Looking at the revived GPU wars and the launch of Intel's Haswell architecture, 4th Generation Core processors we couldn't disagree more.
Built on the same 22nm process technology that Ivy Bridge brought to the world, Haswell is a new architecture from Intel that really changes focus for the company towards a single homogenous design that has the ability to span wide ranging markets. From tablets to performance workstations, Haswell will soon finds its way into just about every crevasse of your technology life.
Today we focus on the desktop though – the release of the new Intel Core i7-4770K, fully unlocked, LGA1150 processor built for the Z87 chipset and DIY builders everywhere. In this review we'll discuss the architectural changes Haswell brings, the overclocking capabilities and limitations of the new design, application performance, graphics performance and quite a bit more.
Haswell remains a quad-core processor built on 1.4 billion transistors in a die measuring 177 mm2 with integrated processor graphics, shared L3 cache, dual channel DDR3 memory controller. But much has changed – let's dive in.
The Haswell Architecture
I have already done quite a bit of writing about the Haswell architecture itself, but much of it is going to be new to our readers or at the very least many will need a refresher. Let's dive into some of the details that were first revealed at the Intel Developer Forum last September.
While Sandy Bridge and Ivy Bridge were really derivatives of prior designs and thought processes, the Haswell design is something completely different for the company. Yes, the microarchitecture of Haswell is still very similar to Sandy Bridge (SNB), but the differences are more philosophical rather than technological.
Intel's target is a converged core: a single design that is flexible enough to be utilized in mobility devices like tablets while also scaling to the performance levels required for workstations and servers. They retain the majority of the architecture design from Sandy Bridge and Ivy Bridge including the core as well as the key features that make Intel's parts unique: HyperThreading, Intel Turbo Boost, and the ring interconnect.
The three pillars that Intel wanted to address with Haswell were performance, modularity, and power innovations. Each of these has its own key goals including improving performance of legacy code (existing), and having the ability to extract greater parallelism with less coding work for developers.
The modularity of Haswell is what gives the processor design its extreme flexibility while providing a consistent optimization path for software developers. The ability for a designer to write an application that can run (though at different feature or performance levels) across the entire array of devices that Haswell will find its way in is powerful.
Haswell (at least in this iteration) will be available in various different configurations including 2-4 processing cores, three different levels of graphics subsystem, differing idle and active power levels, interconnects, and platforms. This will greatly increase the power and performance ranges of Haswell compared to Ivy Bridge (and Sandy Bridge) and is enabled by the system agent that acts as the intermediary between all of the components on the SoC.
Intel also claims that Haswell will permit third-party IP integration, and thus will be capable of adding specific features and technologies as the OEMs demand.
Power Management
Changes to power management on Haswell address both active (in use) and sleep states in order to see the biggest alterations from previous architectures. The goal is to lower the power consumption required during CPU load while also decreasing the amount of time it takes for the entire system to enter and leave sleep states. Intel introduces a new S0ix status that it is borrowing from the ultra-mobile designs of Atom to get a 20x improvement in low power states, and allows improved realizable battery life.
Just as important as the new states themselves is that Intel claims they are completely transparent to "well written" software.
Other changes in the design address power with Haswell, including changes to Turbo Boost technology and more granular voltage and frequency "islands" for the CPU to enter. Also changed from SNB and IVB is that the frequency of the cores is decoupled from the ring bus allowing voltages to scale more gracefully to where the power is actually needed. For example, Ivy Bridge and Sandy Bridge both required power to increase on the CPU cores when the GPU needed more bandwidth on the ring interconnect for other purposes, which is a waste of valuable power.
While we talked about the idle power changes in the slide above, Intel also pointed out that at this point that is is the only CPU vendor that has complete control over its manufacturing. Intel can utilize that advantage by tweaking the process in very specific ways to meet any goals that the engineers might have.
Because the majority of Haswell designs will be completely Intel-based platforms, it makes sense for Intel to address this as well. You will see new voltage regulators and better power-managed controllers (embedded now) in addition to new IO options like I2C, SDIO and I2s that are traditionally only found in mobile devices. New link power states for traditional IO connections like USB and SATA are being introduced that can nearly drop power draw at idle to zero watts.
Haswell Microarchitecture Changes
While the Haswell design is based mainly on the architecture introduced with Sandy Bridge, there are some changes that Intel made to improve performance in the more typical fashion with an eye towards IPC (instructions per clock).
There were no changes in the key pipelines of Haswell but there were many areas that Intel said are "typical improvement points" for the company. The branch predictor has been improved as this is usually the best return on time investment from a CPU-design stand point; Intel increased the buffers on the OOO (out of order) structures in order to help improve the ability for the processor to find parallelism and take advantage of it.
Throughput also sees a boost, with 8 total ports on the reservation station with another ALU unit, another branching unit, and address store. This gives Haswell some improved metrics like two branches per cycle and two floating point MADDs per cycle – both improvements over what we saw in Sandy Bridge and Ivy Bridge processors.
New compute instructions expand on AVX, doubling both single precision and double precision FLOPs per core per cycle. Other new instructions accelerate very specific algorithms with updates for extract and deposits, bit manipulation, rotates, etc.
The cache implementation also sees interesting changes with Haswell including a doubling of the bandwidth to 32-bits wide and one L2 cache read every cycle. Seeing both L1 and L2 cache bandwidths double in a single generation without changing the organization and size of those structures is impressive, though it needs more explanation as well.
Another big upcoming change is the introduction of transactional synchronization extensions (TSX). TSX is a method to improve concurrency and multi-threadedness with as little work for the programmer as possible. By using these new ISA extensions, a developer can apply simple prefixes and suffixes to code blocks to indicate that they are independent and can be run in parallel. Hardware is then capable of managing transactional updates and restart execution if the required block isn't able to be run.
While this might be pretty specific to discuss with our audience, the implications are impressive. Increasing the parallelization of software is one of the key issues holding back innovation on many levels. We have seen the GPU vendors fight this (think CUDA) for years, and Intel's continued push into the MIC (many integrated core) markets will require it as well. If you are interested in this technology, you should check out David Kanter's detailed analysis of it.
Thanks for the review, I just
Thanks for the review, I just wish you’d use 3930K instead of 3970X.
Are there any OpenCL
Are there any OpenCL benchmarks forthcoming, and are there any gaming engines that will be able to utilize Haswell GPGPU + CPU cores for gaming physics while simultaneously using a descrete GPU for gaming graphics! Also, are any lucid gpu virtualization software benchmarks going to be available for Haswell within the next few months, as for desktop gaming Haswell CPUs are always going to be paired with a descrete GPU, and being able to utilize the Haswell GPU for extra gaming compute would be a great boost, short of a 6 core Haswell appearing for the desktop!
Does anyone else see the
Does anyone else see the problem with having 6 SATA3 ports?
They have not changed the 20Gbit DMI 2.0 connection between the CPU and chipset, so the performance of all these ports if actually being utilized is going to be crap, how can you expect to get anywhere close to the 36Gbit that the SATA3 ports should offer (thats when your not even taking into account the other IO, such as the extra SATA3 ports that some boards offer from addon controllers, that likely use some of the pci express lanes from the chipset, its all going to be incredibly bottlenecked by the DMI 2.0 20Gbit bus connecting the CPU to the Chipset
Does Intel no longer have
Does Intel no longer have anything to offer desktop enthusiasts? I’ve been reading the reviews for each generation of the i7 since my 920, and I still haven’t seen a compelling reason to upgrade.
That’s 4 generations of “evolution” that have yielded so little improvements in performance. “Tick-tock” is misleading, as it really feels like “tick-tock-tock-tock-tock…”
im exactly in the same
im exactly in the same situation, so pleased
with my 920 OC & load temps i don’t see any reason to upgrade..
infect i will be waiting for x89, hoping it would be at-list as good as x58 & i7 920 cpu!
Closing thoughts page
Closing thoughts page regarding power consumption has (“remember, they are different sockets not)”. Aren’t you missing something after “not”?
what about the locked parts
what about the locked parts OC? do you still have access to the 5x turbo increase at least?
so is a bulldozer i think the
so is a bulldozer i think the next gen will be better
@Jml: how about that mr. Jml
@Jml: how about that mr. Jml ? Intel Haswell sucks and you suck aswell !
Yawn, what a pathetic showing
Yawn, what a pathetic showing from Intel.
What was the point of that cringe worthy denial of stagnation next to an admission of 5% improvement?
Isn’t it high time to face the music when the efforts of thousands of brilliant and highly educated people and billions in expenses yield a 5% improvement?
Hi guys. Thanks for the
Hi guys. Thanks for the wonderful review.
1. Do you know if any of the GPU SKUs supports FP64, particularly under OpenCL?
2. Is it possible for you to post the OpenCL extensions supported on the HD 4600? You can use a utility like “GPU Caps Viewer” from Geeks3D.
For GPU caps viewer, go to
For GPU caps viewer, go to OpenCL tab, select the GPU device, then go to “More OpenCL information”. That will display the exact list of OpenCL extensions supported. Your help will be greatly appreciated 🙂
No, just like Ivy, the GPU
No, just like Ivy, the GPU does not have OpenCL Khronos ARB FP64 certification. Nor has Intel provided a custom extension like AMD.
It does support FP64 under DirectX ComputeShader.
So it does support FP64 but not precise enough for OpenCL.
Also, wondering about the TSX
Also, wondering about the TSX support. Has Intel posted a list of which SKUs support the new transactional extensions (TSX)?
Appreciate the time to write
Appreciate the time to write up the review Ryan, it’s just a shame Intel is teasing the desktop market with empty promises and a pointless iGPU that nobody cares about. I have yet to meet someone buying an i5 or i7 for their desktop scream, “Oh man it’s got this kick ass iGPU HD 4000 graphics man!”
AMD may be weak in the market, but at least they don’t waste their time and effort creating an all-in-one chip with half the die being wasted adding unnecessary heat. They could start pushing 6 core chips instead into the top i5/i7 chips and use that extra space to push 8 core Extreme parts, but they don’t.
Do. Not. Under. Stand. Intel.
It is so true, Intel’s
It is so true, Intel’s integrated GPU IP will not For the foreseeable future, be able to keep up with AMD’s offerings, as all AMD would have to do is up its, current technology, integrated GPU execution resources to easily overcome any Haswell gains! AMD’s next generation hUMA APUs will, leave Intel’s marketing spin pros, with the hard task of putting so much more lipstick, on an overpriced integrated GPU pig! It is no wonder why Intel marketing had to come up with the ultrabook form factor, to get their Ivybridge hd4000 and Haswell GT3 crystalwell integrated graphics into other than Apple laptop products, yes let’s build a form factor so thin, that the only way to meet the thermal budget is to use Intel’s CPU/(Anemic)GPU product, AMD will upstage Intel on this front, at a much lower cost! I am just fine with a regular form factor laptop, and descrete GPU, and would be better served if I could get more CPU cores, as opposed to an over priced Ultrabook with an overpriced CPU/GPU!
Looking at how AMD leads in
Looking at how AMD leads in the price performance (even the pretty old $100 A10-5800 is a better value than the $350 i7-4770!!!)…
Now we know why Intel CEO Otellini planned to officially jump ship on May 31, 2013. Because the Haswell benchmarks would show what a terrible investment of billions of dollars wasted with little to show.
Let’s not forget Intel’s poor
Let’s not forget Intel’s poor graphics driver record, or Intel’s OEM partners terrable OEM customizied Intel HD graphics driver update issues! Paul(Chip Pimp) Otellini is gone after pulling that golden rip cord, and bailing out! Intel, like M$, has had too much market share, for too long, and this PC/laptop user has had enough of this WINTEL madness! I will stay with my SandyBridge and W7 laptop, and look for AMD’s HSA offerings and Linux! Ultrabooks, without a descrete GPU, is a Ultra Joke!
Great overall review.
Great overall review. Detailed to say the least. Till there is 8 core Intel processors I dont see a need to upgrade from a 3930K for years.
The Core i5 Unlocked version should be interesting based on the price point. Thats what most will be looking at.
Hey, where’s your FCAT
Hey, where’s your FCAT results there buddy? intel pay you enough to omit it? pathetic
You’re apparently too stupid
You’re apparently too stupid to read. It says in the article they’ll be testing the graphics later.
I’m personally interested to see how the GT3e GPU’s do compared to mid ranged Nvidia GPU’s.
Why wasn’t an overclocked
Why wasn’t an overclocked i7-3770K (4.5Ghz)included in the benchmarks? It would be nice to see how the chips compare at that level.
Would like to see an article
Would like to see an article looking at power consumption compared to a i7 920. There’s a few of us out there with the good old 920 overclocked to 4GHz+ burning up a heap of power. I’m wondering if it’s worth the upgrade to Haswell to reduce power consumption and see how long it’ll take to pay off the upgrade.
please post report of
please post report of glewinfo executable of http://glew.sourceforge.net/
https://sourceforge.net/projects/glew/files/glew/1.9.0/glew-1.9.0-win32.zip/download
this should post experimental OGL extensions not reported in gpu caps viewer and I suspect most of OGL 4.2 should expose entry points..
i hope in a very soon intel
i hope in a very soon intel give us another options processor without Intel Integrated Graphics with price cutdown.
that because their IGP is so useless but still AMD bulldozer and APU is such a bottleneck when it’s using with discrete GPU, either AMD and Nvidia GPU.
Hmmmm… Seems Haswell is
Hmmmm… Seems Haswell is Intel’s “bulldozer” fiasco. Haswell should be called Failwell… or Hasbeen.