Last week, Samsung announced that it had started producing a new stackable NAND flash memory called V-NAND, or vertical NAND. The new 3D V-NAND would initially be available in 128Gb (Gigabit) chips, but could eventually scale into as much as 1 Tb (Terabit) per chip by stacking additional dies vertically. Doing so allows Samsung some flexibility in scaling to higher capacities without going to increasingly expensive and difficult to manufacturer smaller manufacturing processes, which has been the traditional method of attaining denser flash.
The company has now announced the V-NAND SSD, which is its first Solid State Drive to use the Vertical NAND technology. Aimed at the enterprise server market, the V-NAND SSD will come in 480GB and 960GB capacities. The 2.5” form factor drives are 7mm thick and come equipped with a SATA III 6Gbps controller. On the high end, the 960GB model uses 64 MLC 3D V-NAND 128Gb dies for a total physical capacity of 1TB. However, user-accessible capacity will be only 960GB. Unfortunately, Samsung did not reveal how many physical chips the drives use, so its hard to say how those 64 128Gb dies are distributed (4 high in 16 chips or 8 high in 8 chips, etc).
The 960GB Samsung V-NAND SSD spotted by Engadget.
Samsung claims that the V-NAND SSD offers up to 20% increased performance and a 40% reduction in power consumption versus previous SSDs. Further, the 3D NAND using Samsung’s Charge Trap Flash technology is rated at 35K program erase cycles. Samsung rates the V-NAND memory itself as being twice as fast in writes and between two and ten times as reliable versus traditional 19nm floating gate NAND (the alternative to CTF NAND).
Samsung's 128Gb V-NAND die.
Samsung stated in a press release that it started production of the V-NAND SSD earlier this month. While it is introducing V-NAND into enterprise drives first, the technology will eventually trickle down into consumer drives. I’m interested to see this drive benchmarked for performance and write endurance to see if the 3D flash lives up to its potential.