Testing Setup and Frame Rating Explanation
Testing Configuration
The specifications for our testing system haven't changed much.
Test System Setup | |
CPU | Intel Core i7-3960X Sandy Bridge-E |
Motherboard | ASUS P9X79 Deluxe |
Memory | Corsair Dominator DDR3-1600 16GB |
Hard Drive | OCZ Agility 4 256GB SSD |
Sound Card | On-board |
Graphics Card | ASUS Strix GTX 780 6GB NVIDIA GeForce GTX 780 3GB AMD Radeon R9 290 4GB ASUS R9 290X DirectCU II 4GB |
Graphics Drivers | AMD: 14.7 Beta NVIDIA: 340.43 Beta |
Power Supply | Corsair AX1200i |
Operating System | Windows 8 Pro x64 |
What you should be watching for
- ASUS Strix GTX 780 6GB vs GTX 780 3GB – How does the out of box experience change with the ASUS Strix card compared to a reference GTX 780?
- ASUS Strix GTX 780 6GB vs R9 290/290X 4GB – AMD cards are definitely going to be cheaper but are they still faster?
Frame Rating: Our Testing Process
If you aren't familiar with it, you should probably do a little research into our testing methodology as it is quite different than others you may see online. Rather than using FRAPS to measure frame rates or frame times, we are using an secondary PC to capture the output from the tested graphics card directly and then use post processing on the resulting video to determine frame rates, frame times, frame variance and much more.
This amount of data can be pretty confusing if you attempting to read it without proper background, but I strongly believe that the results we present paint a much more thorough picture of performance than other options. So please, read up on the full discussion about our Frame Rating methods before moving forward!!
While there are literally dozens of file created for each “run” of benchmarks, there are several resulting graphs that FCAT produces, as well as several more that we are generating with additional code of our own.
If you don't need the example graphs and explanations below, you can jump straight to the benchmark results now!!
The PCPER FRAPS File
While the graphs above are produced by the default version of the scripts from NVIDIA, I have modified and added to them in a few ways to produce additional data for our readers. The first file shows a sub-set of the data from the RUN file above, the average frame rate over time as defined by FRAPS, though we are combining all of the GPUs we are comparing into a single graph. This will basically emulate the data we have been showing you for the past several years.
The PCPER Observed FPS File
This graph takes a different subset of data points and plots them similarly to the FRAPS file above, but this time we are look at the “observed” average frame rates, shown previously as the blue bars in the RUN file above. This takes out the dropped and runts frames, giving you the performance metrics that actually matter – how many frames are being shown to the gamer to improve the animation sequences.
As you’ll see in our full results on the coming pages, seeing a big difference between the FRAPS FPS graphic and the Observed FPS will indicate cases where it is likely the gamer is not getting the full benefit of the hardware investment in their PC.
The PLOT File
The primary file that is generated from the extracted data is a plot of calculated frame times including runts. The numbers here represent the amount of time that frames appear on the screen for the user, a “thinner” line across the time span represents frame times that are consistent and thus should produce the smoothest animation to the gamer. A “wider” line or one with a lot of peaks and valleys indicates a lot more variance and is likely caused by a lot of runts being displayed.
The RUN File
While the two graphs above show combined results for a set of cards being compared, the RUN file will show you the results from a single card on that particular result. It is in this graph that you can see interesting data about runts, drops, average frame rate and the actual frame rate of your gaming experience.
For tests that show no runts or drops, the data is pretty clean. This is the standard frame rate per second over a span of time graph that has become the standard for performance evaluation on graphics cards.
A test that does have runts and drops will look much different. The black bar labeled FRAPS indicates the average frame rate over time that traditional testing would show if you counted the drops and runts in the equation – as FRAPS FPS measurement does. Any area in red is a dropped frame – the wider the amount of red you see, the more colored bars from our overlay were missing in the captured video file, indicating the gamer never saw those frames in any form.
The wide yellow area is the representation of runts, the thin bands of color in our captured video, that we have determined do not add to the animation of the image on the screen. The larger the area of yellow the more often those runts are appearing.
Finally, the blue line is the measured FPS over each second after removing the runts and drops. We are going to be calling this metric the “observed frame rate” as it measures the actual speed of the animation that the gamer experiences.
The PERcentile File
Scott introduced the idea of frame time percentiles months ago but now that we have some different data using direct capture as opposed to FRAPS, the results might be even more telling. In this case, FCAT is showing percentiles not by frame time but instead by instantaneous FPS. This will tell you the minimum frame rate that will appear on the screen at any given percent of time during our benchmark run. The 50th percentile should be very close to the average total frame rate of the benchmark but as we creep closer to the 100% we see how the frame rate will be affected.
The closer this line is to being perfectly flat the better as that would mean we are running at a constant frame rate the entire time. A steep decline on the right hand side tells us that frame times are varying more and more frequently and might indicate potential stutter in the animation.
The PCPER Frame Time Variance File
Of all the data we are presenting, this is probably the one that needs the most discussion. In an attempt to create a new metric for gaming and graphics performance, I wanted to try to find a way to define stutter based on the data sets we had collected. As I mentioned earlier, we can define a single stutter as a variance level between t_game and t_display. This variance can be introduced in t_game, t_display, or on both levels. Since we can currently only reliably test the t_display rate, how can we create a definition of stutter that makes sense and that can be applied across multiple games and platforms?
We define a single frame variance as the difference between the current frame time and the previous frame time – how consistent the two frames presented to the gamer. However, as I found in my testing plotting the value of this frame variance is nearly a perfect match to the data presented by the minimum FPS (PER) file created by FCAT. To be more specific, stutter is only perceived when there is a break from the previous animation frame rates.
Our current running theory for a stutter evaluation is this: find the current frame time variance by comparing the current frame time to the running average of the frame times of the previous 20 frames. Then, by sorting these frame times and plotting them in a percentile form we can get an interesting look at potential stutter. Comparing the frame times to a running average rather than just to the previous frame should prevent potential problems from legitimate performance peaks or valleys found when moving from a highly compute intensive scene to a lower one.
While we are still trying to figure out if this is the best way to visualize stutter in a game, we have seen enough evidence in our game play testing and by comparing the above graphic to other data generated through our Frame rating system to be reasonably confident in our assertions. So much in fact that I am going to going this data the PCPER ISU, which beer fans will appreciate the acronym of International Stutter Units.
To compare these results you want to see a line that is as close the 0ms mark as possible indicating very little frame rate variance when compared to a running average of previous frames. There will be some inevitable incline as we reach the 90+ percentile but that is expected with any game play sequence that varies from scene to scene. What we do not want to see is a sharper line up that would indicate higher frame variance (ISU) and could be an indication that the game sees microstuttering and hitching problems.
Usually when a review claims
Usually when a review claims 6 gigs is enough for 4k gaming they actually include that in the benchmarks, contradicting your hardocp link of gtx 6 gig 780s in sli which cliams 6 gigs isn’t enough for 4k gaming!
They didn’t claim that. They
They didn’t claim that. They claimed that there was an issue with this card in SLI at 4K that is likely a software issue, noting that the 290X w/4GB performed flawlessly. 6GB should be more than sufficient unless you’re using more than one 4K display.
http://www.digitalstormonline.com/unlocked/video-memory-usage-at-4k-uhd-resolutions-idnum146/
True but i prefer something
True but i prefer something more future proof 8 gigs minimum for me this fall gtx 880s in sli 8 gigs vram.
8 gig vram flavored
8 gig vram flavored
GDDR6
GDDR6
How big are the fans? 80mm?
How big are the fans? 80mm?
Unreal still no 6GB ti’s
Unreal still no 6GB ti’s
Surely you’re just yanking my
Surely you’re just yanking my Schloss
Realize that the Titan Black fills that spot and that there NEVER will be a 780Ti 6GB card.
Lol like titan filled spot
Lol like titan filled spot for 780s? Your logic fails
6GB TI’s will be available soon nvida milking kepler
It looks like an Owl Eyes
It looks like an Owl Eyes mask, lol
Yes!
Yes!
Also, no mention of the
Also, no mention of the guru3d FLiR test and the DCUII VRM design flaw, leaving you with VRM temps runing close to the rated specs of the components of the PCB.
Fancy 104C VRM anyone? 😛
Bringning this to ASUS tech supports attention, they reply that I should RMA my cards. Go fogure.
This is PCPerspective we
This is PCPerspective we don’t mention short comings with Nvidia base products we just highlight the good.
I haven’t seen any FLIR
I haven't seen any FLIR results on these cards, feel free to share a link.
http://www.guru3d.com/article
http://www.guru3d.com/articles_pages/asus_geforce_gtx_780_strix_6_gb_graphics_card_review,9.html
That is indeed pretty damn
That is indeed pretty damn hot. But even Guru3D only says in the conclusion that "they wanted to note it" but didn't hold back their recommendation because of it.
Imo,it’s more about peace of
Imo,it’s more about peace of mind when buying something so expensive. Quite possibly the VRM will just work for years and years, but then again maybe it will burn up after a year or two the card cooking itself. If I had $600 to buy a new video card, I’d get something different than this card, but would also check that other site to see if they did a thermal review on it as well.
Its about being thoroughly
Its about being thoroughly informed about a product.
Most of the gpu reviews here at PCPerspective revolve around 4-5 games with overclocking, power and sound summarize. They tell you more about those 4-5 games rather then the hardware that’s being reviewed.
If one wants detailed consistent analysis they are forced to go somewhere else.
Actually, I agree with that.
Actually, I agree with that.
Put this Graphics card
Put this Graphics card against the 780 TI and a 780 TI in SLI so I can really see the difference not this Cheap a scapegoat OF A TEST
By the way it says on your
By the way it says on your charts 680 NOT 780
Which charts?? All the perf
Which charts?? All the perf results look correct to me.
You should limit the temp to
You should limit the temp to below the fan spin up thershold and see what kind of performance you get with the card running passive 100% of the time.
You should limit the temp to
You should limit the temp to below the fan spin up thershold and see what kind of performance you get with the card running passive 100% of the time.
No watch dogs utlra
No watch dogs utlra benchmarks? It uses a lot of VRAM.