While Nvidia's Pascal has held the spotlight in the news recently, it is not the only new GPU architecture debuting this year. AMD will soon be bringing its Polaris-based graphics cards to market for notebooks and mainstream desktop users. While several different code names have been thrown around for these new chips, they are consistently in general terms referred to as Polaris 10 and Polaris 11. AMD's Raja Kudori stated in an interview with PC Perspective that the numbers used in the naming scheme hold no special significance, but eventually Polaris will be used across the entire performance lineup (low end to high end graphics).

Naturally, there are going to be many rumors and leaks as the launch gets closer. In fact, Tech Power Up recently came into a number of interesting details about AMD's plans for Polaris-based graphics in 2016 including specifications and which areas of the market each chip is going to be aimed at. 

Citing the usual "industry sources" familiar with the matter (take that for what it's worth, but the specifications do not seem out of the realm of possibility), Tech Power Up revealed that there are two lines of Polaris-based GPUs that will be made available this year. Polaris 10 will allegedly occupy the mid-range (mainstream) graphics option in desktops as well as being the basis for high end gaming notebook graphics chips. On the other hand, Polaris 11 will reportedly be a smaller chip aimed at thin-and-light notebooks and mainstream laptops.

Now, for the juicy bits of the leak: the rumored specifications!

AMD's "Polaris 10" GPU will feature 32 compute units (CUs) which TPU estimates – based on the assumption that each CU still contains 64 shaders on Polaris – works out to 2,048 shaders. The GPU further features a 256-bit memory interface along with a memory controller supporting GDDR5 and GDDR5X (though not at the same time heh). This would leave room for cheaper Polaris 10 derived products with less than 32 CUs and/or cheaper GDDR5 memory. Graphics cards would have as much as 8GB of memory initially clocked at 7 Gbps. Reportedly, the full 32 CU GPU is rated at 5.5 TFLOPS of single precision compute power and runs at a TDP of no more than 150 watts.

Compared to the existing Hawaii-based R9 390X, the upcoming R9 400 Polaris 10 series GPU has fewer shaders and less memory bandwidth. The memory is clocked 1 GHz higher, but the GDDR5X memory bus is half that of the 390X's 512-bit GDDR5 bus which results in 224 GB/s memory bandwidth for Polaris 10 versus 384 GB/s on Hawaii. The R9 390X has a slight edge in compute performance at 5.9 TFLOPS versus Polaris 10's 5.5 TFLOPS however the Polaris 10 GPU is using much less power and easily wins at performance per watt! It almost reaches the same level of single precision compute performance at nearly half the power which is impressive if it holds true!

  R9 390X R9 390 R9 380 R9 400-Series "Polaris 10"
GPU Code name Grenada (Hawaii) Grenada (Hawaii) Antigua (Tonga) Polaris 10
GPU Cores 2816 2560 1792 2048
Rated Clock 1050 MHz 1000 MHz 970 MHz ~1343 MHz
Texture Units 176 160 112 ?
ROP Units 64 64 32 ?
Memory 8GB 8GB 4GB 8GB
Memory Clock 6000 MHz 6000 MHz 5700 MHz 7000 MHz
Memory Interface 512-bit 512-bit 256-bit 256-bit
Memory Bandwidth 384 GB/s 384 GB/s 182.4 GB/s 224 GB/s
TDP 275 watts 275 watts 190 watts 150 watts (or less)
Peak Compute 5.9 TFLOPS 5.1 TFLOPS 3.48 TFLOPS 5.5 TFLOPS
MSRP (current) ~$400 ~$310 ~$199 $ unknown

Note: Polaris GPU clocks esitmated using assumption of 5.5 TFLOPS being peak compute and accurate number of shaders. (Thanks Scott.)

Another comparison that can be made is to the Radeon R9 380 which is a Tonga-based GPU with similar TDP. In this matchup, the Polaris 10 based chip will – at a slightly lower TDP – pack in more shaders, twice the amount of faster clocked memory with 23% more bandwidth, and provide a 58% increase in single precision compute horsepower. Not too shabby!

Likely, a good portion of these increases are made possible by the move to a smaller process node and utilizing FinFET "tri-gate" like transistors on the Samsung/Globalfoundries 14LPP FinFET manufacturing process, though AMD has also made some architecture tweaks and hardware additions to the GCN 4.0 based processors. A brief high level introduction is said to be made today in a webinar for their partners (though AMD has come out and said preemptively that no technical nitty-gritty details will be divulged yet). (Update: Tech Altar summarized the partner webinar. Unfortunately there was no major reveals other than that AMD will not be limiting AIB partners from pushing for the highest factory overclocks they can get).

Moving on from Polaris 10 for a bit, Polaris 11 is rumored to be a smaller GCN 4.0 chip that will top out at 14 CUs (estimated 896 shaders/stream processors) and 2.5 TFLOPS of single precision compute power. These chips aimed at mainstream and thin-and-light laptops will have 50W TDPs and will be paired with up to 4GB of GDDR5 memory. There is apparently no GDDR5X option for these, which makes sense at this price point and performance level. The 128-bit bus is a bit limiting, but this is a low end mobile chip we are talking about here...

  R7 370 R7 400 Series "Polaris 11"
GPU Code name Trinidad (Pitcairn) Polaris 11
GPU Cores 1024 896
Rated Clock

925 MHz base (975 MHz boost)

~1395 MHz
Texture Units 64 ?
ROP Units 32 ?
Memory 2 or 4GB 4GB
Memory Clock 5600 MHz ? MHz
Memory Interface 256-bit 128-bit
Memory Bandwidth 179.2 GB/s ? GB/s
TDP 110 watts 50 watts
Peak Compute 1.89 TFLOPS 2.5 TFLOPS
MSRP (current) ~$140 (less after rebates and sales) $?

Note: Polaris GPU clocks esitmated using assumption of 2.5 TFLOPS being peak compute and accurate number of shaders. (Thanks Scott.)

Fewer details were unveiled concerning Polaris 11, as you can see from the chart above. From what we know so far, it should be a promising successor to the R7 370 series even with the memory bus limitation and lower shader count as the GPU should be clocked higher, (it also might have more shaders in M series mobile variants versus of the 370 and lower mobile series) and a much lower TDP for at least equivalent if not a decent increase in performance. The lower power usage in particular will be hugely welcomed in mobile devices as it will result in longer battery life under the same workloads, ideally. I picked the R7 370 as the comparison as it has 4 gigabytes of memory and not that many more shaders and being a desktop chip readers may be more widely familiar with it. It also appears to sit between the R7 360 and R7 370 in terms of shader count and other features but is allegedly going to be faster than both of them while using at least (on paper) less than half the power.

Of course these are still rumors until AMD makes Polaris officially, well, official with a product launch. The claimed specifications appear reasonable though, and based on that there are a few important takeaways and thoughts I have.

The first thing on my mind is that AMD is taking an interesting direction here. While NVIDIA has chosen to start out its new generation at the top by announcing "big Pascal" GP100 and actually launching the GP104 GTX 1080 (one of its highest end consumer chips/cards) yesterday and then over the course of the year introducing lower end products AMD has opted for the opposite approach. AMD will be starting closer to the lower end with a mainstream notebook chip and high end notebook/mainstream desktop GPU (Polaris 11 and 10 respectively) and then over a year fleshing out its product stack (remember Raja Kudori stated Polaris and GCN 4 would be used across the entire product stack) and building up with bigger and higher end GPUs over time finally topping off with its highest end consumer (and professional) GPUs based on "Vega" in 2017.

This means, and I'm not sure if this was planned by either Nvidia or AMD or just how it happened to work out based on them following their own GPU philosophies (but I'm thinking the latter), that for some time after both architectures are launched AMD and NVIDIA's newest architectures and GPUs will not be directly competing with each other. Eventually they should meet in the middle (maybe late this year?) with a mid-range desktop graphics card and it will be interesting to see how they stack up at similar price points and hardware levels. Then, of course once "Vega" based GPUs hit (sadly probably in time for NV's big Pascal to launch heh. I'm not sure if Vega is Fury X replacement only or even beyond that to 1080Ti or even GP100 competitor) we should see GCN 4 on the new smaller process node square up against NVIDIA and it's 16nm Pascal products across the board (entire lineup). Which will have the better performance, which will win out in power usage and performance/watt and performance/$? All questions I wish I knew the answers to, but sadly do not!!

Speaking of price and performance/$... Polaris is actually looking pretty good so far at hitting much lower TDPs and power usage targets while delivering at least similar performance if not a good bit more. Both AMD and NVIDIA appear to be bringing out GPUs better than I expected to see as far as technological improvements in performance and power usage (these die shrinks have really helped even though from here on out that trend isn't really going to continue...). I hope that AMD can at least match NV in these areas at the mid range even if they do not have a high end GPU coming out soon (not until sometime after these cards launch and not really until Vega, the high end GCN GPU successor). At least on paper based on the leaked information the GPUs so far look good. My only worry is going to be pricing which I think is going to make or break these cards. AMD will need to price them competitively and aggressively to ensure their adoption and success.  

I hope that doing the rollout this way (starting with lower end chips) helps AMD to iron out the new smaller process node and that they are able to get good yields so that they can be aggressive with pricing here and eventually at the hgh end!

I am looking forward to more information on AMD's Polaris architecture and the graphics cards based on it!

Also read:

I will admit that I am not 100% up on all the rumors and I apologize for that. With that said, I would love to hear what your thoughts are on AMD's upcoming GPUs and what you think about these latest rumors!