Performance Focus – Toshiba RC100 240GB
I'm sticking with the 'burst vs. saturated' plots here, as they do well to show both sustained performance and the more realistic (for client PC usage) burst throughputs.
Sequential
Random
Burst and sustained reads for both sequential and random are nearly identical in the above two charts, which is expected. Sustained and burst random write performance both hover around 20,000 IOPS, suggesting that the cache remained saturated even for our relatively low duty cycle burst pattern (we should have seen something closer to the 110,000 rating here). Burst sequential writes see an SLC cache speed of nearly 900 MB/s, with a sustained speed closer to 400 MB/s – identical to what we saw with the 480GB model.
Burst Random %Read Sweep
Similar performance dip that we saw with the 480GB model appears here, but more severe than before. Still not a major issue as most client workloads occur in the 70% and higher region, but it is worth noting for those with heavier write workloads.
Caching
Bad news on the caching test here. This test employs a QD4 128K sequential write, which is a simple workload that all caching SSDs should be able to handle. We *should* see SLC speeds somewhere along this plot since we are giving the SSD varying idles of up to 90 seconds, yet the 240GB RC100 appeared 'stuck' at ~230 MB/s for the duration of this test. It did write at higher speeds of up to 900 MB/s elsewhere in the suite, just not during this specific test.
Awe they are so cute baby SSD
Awe they are so cute baby SSD drives. There was no mention if these have cache or no cache. Well unless I missed it in the post some where. If they do not have cache then it is a no go even though these are budget parts I would expect some sort of cache on them. I have seen non cache drives and the performance is not good at all.
They use Host Memory Buffer
They use Host Memory Buffer in place of on-drive RAM.
There is SLC caching (SSDs do
There is SLC caching (SSDs do not typically cache data in RAM as that is reserved for FTL). These of course have no external DRAM but can share a small amount of memory from the host via NVMe 1.3 extensions.
Hopefully they have gotten
Hopefully they have gotten better at this because when the first generation SSD’s came out without onboard memory cache it really hurt performance of those drives.
I just read the review of
I just read the review of these drives over on Anandtech and it was a mixed bag for the results. In some tests the drive just kinda fell apart and performed very badly and in others it did well and in 1 test it actually lead the pack. For my own needs I do not think Dram-less SSDs are the way to go. To be worth it this drive and others like it need to be much much lower in price because you are not getting remotely close performance of the higher end drives but the prices for these types of drives do not really reflect the price to performance ratio.
I do think a drive like this would be great in a value laptop as long as they do not try to install the 120GB version that is I think 250GB-256GB should be the lowest size for any system and even then that is pushing the size limits but is workable at least.
A while back a customer of mine wanted a good but also cheaper gaming system. I got him a Acer Pred system but the thing only had a 256GB SSD (Dram-less)& a 2TB storage drive. I never knew SSD drives could feel so slow until I hit the power button and the system booted up and it felt like it was running on a standard spindle drive but in fact was running windows on the SSD. I did tests on the SSD and it got over 500MB’s read and 485MB’s writes.
So in theory it should have felt faster. The system had 16Gb DDR4 2600MHz memory and an i7 7700 so plenty of memory and CPU HP and a Geforce 1070 8GB. Yet it felt slow I come to find out it was a 256GB Dram-less drive and used host memory to cache.
At this point I swore off of dram-less drives for my own setups because my old Samsung 512Gb Pro Sata drive felt so much faster and does not have that feeling like everything is lagging and this is on an old i7 2600K@5.1GHz which should not be as peppy as a i7 7700 system.
Please review the EX920! 🙂
Please review the EX920! 🙂
Anyone make an x16 card with
Anyone make an x16 card with 8 x2 m.2?
Or an 8x pcie3 lane slot
Or an 8x pcie3 lane slot rigged as 16x pcie2 lane slot, w/ quad m.2 port adapter running 4x 4 lane nvme?
In theory e.g., an Apu, or an intel/am4 desktop pc w/ an 8 lane dgpu, could spare the lanes to run such an array?
How you get 2 lane m.2 ports on a PC is a mystery to me?
same price at the western
same price at the western digital. ill stick with WD, since toshiba still give people hell on returning items under warranty. not a company i want to continue buying from.
There are quite a few
There are quite a few business oriented laptops that have a regular m.2 2280 slot but if you look closely, also a 2nd m.2 2242 PCI-e only slot that is for a WAN/Cellular card.
I used that empty WAN slot to get two SSDs in a business class Dell laptop. Only had one option back than.
Just FYI, for anyone else wanting to add a bit of extra SSD storage to their laptop.
The problem is that most of
The problem is that most of the systems I have seen do not support anything other than the 2280 form factor when it comes to M.2. HP Omen, Sager, Clevo, MSI, Gigabyte and many others are this way from what I have seen.
Please be careful when you purchase a M.2 drive to be sure that your system supports that form factor. If you don’t, you often have something you cannot use, or face damaging the drive or your system.
Wonder if it’s the $3 saved
Wonder if it’s the $3 saved from no ram that’s causing
poor performance,or the combination of that and a c**p
controller…………..
Tosh’s lack of info on it’s controllers often has me
thinking it’s a Phison in disguise……